NURS 655 Difference Between supervised and unsupervised learning DQ

Want create site? With Free visual composer you can do it easy.

NURS 655 Difference Between supervised and unsupervised learning DQ

NURS 655 Difference Between supervised and unsupervised learning DQ


Discuss the challenges associated with “free-text” clinical
information (e.g., Nursing Progress Notes).


Compare and contrast supervised and unsupervised learning as
discussed in your readings. Give specific examples to explain both.

Difference Between Supervised and Unsupervised Learning

Supervised learning vs Unsupervised learningSupervised and Unsupervised learning are the machine learning paradigms which are used in solving the class of tasks by learning from the experience and performance measure. The supervised and Unsupervised learning mainly differ by the fact that supervised learning involves the mapping from the input to the essential output. On the contrary, unsupervised learning does not aim to produce output in the response of the particular input instead it discovers patterns in data.

Content: Supervised Learning Vs Unsupervised Learning

    1. Comparison Chart
    2. Definition
    3. Key Differences
    4. Conclusion

Comparison Chart


Basic Deals with labelled data. Handles unlabeled data.
Computational complexity High Low
Analyzation Offline Real-time
Accuracy Produces accurate results Generates moderate results
Sub-domains Classification and regression Clustering and Association rule mining

Definition of Supervised Learning

Supervised learning method involves the training of the system or machine where the training sets along with the target pattern (Output pattern) is provided to the system for performing a task. Typically supervise means to observe and guide the execution of the tasks, project and activity. But, where supervised learning can be implemented? Primarily, it is implemented in the machine learning Regression and Cluster and Neural networks.

Click here to ORDER an A++ paper from our Verified MASTERS and DOCTORATE WRITERS:NURS 655 Difference Between supervised and unsupervised learning DQ

Now, how do we train a model? The model is guided with the help of loading the model with the knowledge, to facilitate the prediction of future instances. It uses labelled datasets for the training. The artificial neural networks the input pattern train the network which is also associated with the output pattern.

Definition of Unsupervised Learning

Unsupervised Learning model does not involve the target output which means no training is provided to the system. The system has to learn by its own through determining and adapting according to the structural characteristics in the input patterns. It uses machine learning algorithms that draw conclusions on unlabeled data.

The unsupervised learning works on more complicated algorithms as compared to the supervised learning because we have rare or no information about the data. It creates a less manageable environment as the machine or system intended to generate results for us. The main objective of the unsupervised learning is to search entities such as groups, clusters, dimensionality reduction and perform density estimation.

Key Differences Between Supervised and Unsupervised Learning

  1. Supervised learning technique deals with the labelled data where the output data patterns are known to the system. As against, the unsupervised learning works with unlabeled data in which the output is just based on the collection of perceptions.
  2. When it comes to the complexity the supervised learning method is less complex while unsupervised learning method is more complicated.
  3. The supervised learning can also conduct offline analysis whereas unsupervised learning employs real-time analysis.
  4. The outcome of the supervised learning technique is more accurate and reliable. In contrast, unsupervised learning generates moderate but reliable results.
  5. Classification and regression are the types of problems solved under the supervised learning method. Conversely, unsupervised learning includes clustering and associative rule mining problems.


Supervised learning is the technique of accomplishing a task by providing training, input and output patterns to the systems whereas unsupervised learning is a self-learning technique in which system has to discover the features of the input population by its own and no prior set of categories are used.

Did you find apk for android? You can find new Free Android Games and apps.