NURS 655 Assignment Data Use Paper

Want create site? With Free visual composer you can do it easy.

NURS 655 Assignment Data Use Paper

NURS 655 Assignment Data Use Paper

Research a
health-related business that collects big data and explain the following in a
two-page paper in APA format:

Give a brief overview of big data.

How do the topics learned in this class relate to big data
in health care?

In the use case of the business you researched, what kind of
data is collected and what are the advantages of collecting this type of data?

Include 2–3 scholarly resources in APA format. Examples of
scholarly sources include professional journal articles and books obtained from
library databases, national guidelines, and informatics organizations,
published within the last five years.


Before paper was used for storing data, it had been used in several applications for storing instructions to specify a machine’s operation. The earliest use of paper to store instructions for a machine was the work of Basile Bouchon who, in 1725, used punched paper rolls to control textile looms. This technology was later developed into the wildly successful Jacquard loom. The 19th century saw several other uses of paper for controlling machines. In 1846, telegrams could be prerecorded on punched tape and rapidly transmitted using Alexander Bain‘s automatic telegraph. Several inventors took the concept of a mechanical organ and used paper to represent the music.

IBM1130CopyCard.agr.jpgBinary punched card

In the late 1880s Herman Hollerith invented the recording of data on a medium that could then be read by a machine. Prior uses of machine readable media, above, had been for control (automatonspiano rollslooms, …), not data. “After some initial trials with paper tape, he settled on punched cards…”[1] Hollerith’s method was used in the 1890 census. Hollerith’s company eventually became the core of IBM.

Other technologies were also developed that allowed machines to work with marks on paper instead of punched holes. This technology was widely used for tabulating votes and grading standardized tests. Banks used magnetic ink on checks, supporting MICR scanning.

In an early electronic computing device, the Atanasoff-Berry Computer, electric sparks were used to singe small holes in paper cards to represent binary data. The altered dielectric constant of the paper at the location of the holes could then be used to read the binary data back into the machine by means of electric sparks of lower voltage than the sparks used to create the holes. This form of paper data storage was never made reliable and was not used in any subsequent machine.

Click here to ORDER an A++ paper from our Verified MASTERS and DOCTORATE WRITERS NURS 655 Assignment Data Use Paper:

Modern techniques[edit]

1D Barcodes[edit]

Barcodes make it possible for any object that was to be sold or transported to have some computer readable information securely attached to it. Universal Product Code barcodes, first used in 1974, are ubiquitous today. Some people recommend a width of at least 3 pixels for each minimum-width gap and each minimum-width bar for 1D barcodes. The density is about 50 bits per linear inch (about 2 bit/mm).

2D Barcodes[edit]


2D barcodes allow to store much more data on paper, up to 2.9 kbyte per barcode. It is recommended to have a width of at least 4 pixels—e.g., a 4 × 4 pixel = 16 pixel module.[2] For a typical black-and-white barcode scanned by a typical 300 dpi image scanner, and assuming roughly half the space is occupied by finder patterns, fiducial alignment patterns, and error detection and correction codes, that recommendation gives a maximum data density of roughly roughly 2 800 bits per square inch (about 4.4 bit/mm2). With a typical 300 dpi scanner, one can stack up to 24 high-density QR-codes on an A4/letter page.[3] One can use color in the data encoding scheme, by doing so, one further increases the maximum density, as for example in German administration’s JAB-Code shown at the left.


The limits of data storage depend on the technology to write and read such data. The theoretical limits assume a scanner that can perfectly reproduce the printed image at its printing resolution, and a program which can accurately interpret such an image. For example, an 8″ × 10″ 600dpi black-and-white image contains 3.43 MiB of data, as does a 300dpi CMYK printed image. A 2400ppi True color (24-bit) image contains about 1.29 GiB of information; printing an image maintaining this data would require a printing resolution of about 120,000 dpi in black and white, or 60,000 dpi with CMYK dots.

Did you find apk for android? You can find new Free Android Games and apps.